Behavior of solutions to Gauss - Bieberbach - Rademacher equation on plane

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BEHAVIOR OF SOLUTIONS TO A FUZZY NONLINEAR DIFFERENCE EQUATION

In this paper, we study the existence, asymptotic behavior of the positive solutions of a fuzzy nonlinear difference equation$$ x_{n+1}=frac{Ax_n+x_{n-1}}{B+x_{n-1}}, n=0,1,cdots,$$ where $(x_n)$ is a sequence of positive fuzzy number, $A, B$ are positive fuzzy numbers and the initial conditions $x_{-1}, x_0$ are positive fuzzy numbers.

متن کامل

behavior of solutions to a fuzzy nonlinear difference equation

in this paper, we study the existence, asymptotic behavior of the positive solutions of a fuzzy nonlinear difference equation$$ x_{n+1}=frac{ax_n+x_{n-1}}{b+x_{n-1}}, n=0,1,cdots,$$ where $(x_n)$ is a sequence of positive fuzzy number, $a, b$ are positive fuzzy numbers and the initial conditions $x_{-1}, x_0$ are positive fuzzy numbers.

متن کامل

Construction of Bessel-Gauss Type Solutions for the Telegraph Equation

The specific solutions of the telegraph equation for 3D space are constructed. These solutions enable us to obtain the wavefunctions which are akin to the Bessel-Gauss wave modes. The solutions of the homogeneous and inhomogeneous equations are compared. The application of the obtained wave structures to the description of the electromagnetic fields in a special case of inhomogeneity of the med...

متن کامل

Asymptotic Behavior of Solutions to the Damped Nonlinear Hyperbolic Equation

(x 1 , . . . , x n ) ∈ Rn and t > 0, k 1 > 0 and k 2 > 0 are constants. The nonlinear termf(u) = O(u1+θ) and θ is a positive integer. Equation (1) is a model in variational form for the neoHookean elastomer rod and describes the motion of a neoHookean elastomer rod with internal damping; for more detailed physical background, we refer to [1]. In [1], the authors have studied a general class of ...

متن کامل

Asymptotic Behavior of Solutions to the Finite-Difference Wave Equation

where up in Eq. (2) corresponds to u(jôx, not) in Eq. (1), and where a = cSt/Sx. Here öt and Sx are the time and space intervals, respectively. We consider the case — co < x < », í > 0. It was shown by Courant, Friedrichs, and Lewy in a wellknown paper [1] that if up and u,x are prescribed for ally, then the computational process represented by Eq. (2) will yield values for w/ which converge to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ufa Mathematical Journal

سال: 2014

ISSN: 2074-1863,2074-1871

DOI: 10.13108/2014-6-3-85